DETUROPE - The Central European Journal of Regional Development and Tourism 2017, 9(1):130-137 | DOI: 10.32725/det.2017.009

Autonóm repülő robotok alkalmazása vízelvezető csatornák felügyeletére

Anita Szabó
Subotica Tech - College of Applied Sciences, Marka Oreškovića 16, 24000, Subotica, Serbia; Faculty of Engineering, University of Pécs

Az utóbbi évtizedek éghajlati változásai már a Vajdaság területén is érezhető változásokat okoztak. A főleg mezőgazdasági iparra támaszkodó gazdaság számára fontos termőterületeket így egyes években belvíz, míg más években aszály sújtja. Ezen hatások ellensúlyozására a már kiépült csatorna hálózat hivatott. A csatornahálózat állapotának periodikus felügyelete annak mérete miatt igen erőforrás igényes. Kutatásunk a regionális öntöző és vízelvezető csatornák drónokkal való légi felügyeletét vizsgálja. Az autonóm robotok az utóbbi időben egyre olcsóbbak lettek. Ez részben azért történik, mert a felhasznált technológia egyre olcsóbb, másrészt a drónok betörtek a fogyasztói piacra is, ezért az áruk csökken. Ez lehetővé teszi a felhasználásukat kutatásokban vagy az iparban anélkül, hogy nagyobb anyagi ráfordítás nélkül. Ebben a kutatásban egy, a piacon elérhető drónok került felhasználásra a város szerte megtalálható vízelvezető csatornák felügyeletére. A készülék gyárilag tartalmaz beépített kamerát és vezetéknélküli internethez szükséges alkatrészeket. Ezek lehetővé teszik azt, hogy képek és videofelvételek készüljenek, valamint azok feltöltését az irányító eszközre. Szintén lehetséges élő video közvetítése az eszközre valós időben. A vezérlőeszköz lehet PC, tablet, vagy akár mobiltelefon is. A jövőbeni tervek között szerepel a kliensszoftver kiegészítése úgy, hogy az elkészült videót fel tudja tölteni a felhőbe későbbi megtekintésre. Továbbá más érzékelők is hozzáadhatók az eszközhöz.

Keywords: drónok, robot, víz, térképezés, monitorozás, felhő

Using Autonomous Flying Robots to Monitor Canals

The weather change of the recent decades caused changes that can be felt in Vojvodina, too. In this economy which mostly relies on agriculture, farmlands are afflicted with floods one year and drought in another. To balance these, canal systems are already built. Because of the size of the canal network, its periodic monitoring requires huge amount of work and recourses. Our research investigates possibility of aerial monitoring of regional irrigation and drainage canals using drones. Autonomous flying robots are becoming more and more popular in recent years. This is happening because the technology they are based on is getting less expensive, quadcopters have broken into the consumer market, so the manufacturing costs are constantly decreasing. This enables them to be used both in research and in the industry without having to pay huge amounts of money. In this research, a commercially available quadcopter has been used to monitor water canals around the city. By design, the device has a built-in camera and wireless internet capabilities. These allow to take photos, record video and upload them to the controlling device. It is also possible to stream the live video to the device in real time. The controlling device can be a personal computer, a tablet or even a mobile phone. It is planned that the client software be extended with capability to upload video and photos to the cloud for later reference. Also, other sensors can be added to the device, too.

Keywords: quadcopter, robot, water, mapping, monitoring, cloud

Published: March 31, 2017  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Szabó, A. (2017). Using Autonomous Flying Robots to Monitor Canals. DETUROPE - The Central European Journal of Regional Development and Tourism9(1), 130-137. doi: 10.32725/det.2017.009
Download citation

References

  1. Blaschke, T. (2010). Object based image analysis for remote sensing. ISPRS journal of photogrammetry and remote sensing, Volume 65, Issue 1, pp. 2-16. Go to original source...
  2. Dahdouh-Guebas, F. (2002). The use of remote sensing and GIS in the sustainable management of tropical coastal ecosystems. Environ. Dev. Sustain. 4 (2), pp. 93-112. Go to original source...
  3. Gruen, A., Beyer, H.A. (2001). System calibration through self calibration. Calibration and orientation of cameras in computer vision. In: Gruen, Huang (Eds.), Springer Series In, Information Sciences 34, pp. 163-194. Go to original source...
  4. Kressler, F.P., Steinnocher, K., & Franzen, M. (2005). Object-oriented classification of orthophotos to support update of spatial databases. In: Geoscience and Remote Sensing Symposium, IEEE International, vol. 1, ISBN: 0-7803-9050-4. Go to original source...
  5. Koh, L.P., & Wich, S.A. (2012). Dawn of drone ecology: low-cost autonomous aerial vehicles for conservation. Trop. Conserv. Sci. 5 (2), pp. 121-132. Go to original source...
  6. Landgrebe, D.A. (1980). The development of a spectral-spatial classifier for Earth observational data. Pattern Recognit. 12, pp. 165-175. Go to original source...
  7. Langlois, T. J., Harvey, E.S., Fitzpatrick, B., Meeuwig, J.J., Shedrawi, G., & Watson, D.L. (2010). Cost-efficient sampling of fish assemblages: comparison of baited video stations and diver video transects. Aquat. Biol. 9 (2), pp. 155-168. Go to original source...
  8. Pierrot-Deseilligny, M., De Luca, L., & Remondino, F. (2011). Automated image-based procedures for accurate artifacts 3D modeling and orthoimage generation. Geoinform.s FCE CTU J. 6, pp. 291-299. Go to original source...
  9. Pindozzi, S., Faugno, S., Okello, C., & Boccia, L. (2013). Measurement and prediction of buffalo manure evaporation in the farmyard to improve farm management. Biosyst. Eng. 115 (2), pp. 117-124. Go to original source...
  10. Pelletier, D., Leleu, K., Mallet, D., Mou-Tham, G., Herve, G., Boureau, M., & Guilpart, N. (2012). Remote high-definition rotating video enables fast spatial survey of marine underwater macro fauna and habitats. PLOSONE 7 (2), e30536 http://dx.doi.org/10.1371/journal.pone.0030536. Go to original source...
  11. Perry, J.H., Mohamed, A., El-Rahman, A.H., Bowman, W.S., Kaddoura, Y.O., & Watts, A.C. (2008). Precision directly geo referenced unmanned aerial remote sensing system: performance evaluation. Proceedings of the Institute of Navigation National Technical Meeting, San Diego, CA, USA, pp. 680-688.
  12. Paneque-Galvez, J., McCall, M.K., Napoletano, B.M., Wich, S.A., & Koh, L.P. (2014). Small drones for community-based forest monitoring: an assessment of the irfeasibility and potential in tropical areas. Forests 5 (6), 1481-1507. Go to original source...
  13. Quilter, M.C., & Anderson, V.J. (2000). Low altitude/large scale aerial photographs: a tool for range and resource managers. Rangel. Arch. 22 (2), 13-17. Go to original source...
  14. Ramachandran, S.,Sundramoorthy, S., Krishnamoorthy, R., Devasenapathy, J., & Thanikachalam, M. (1998). Application of remote sensing and GIS to Coastal Wetland Ecology of Tamilnadu and Andaman and Nicobar group of Islands with special reference to Mangroves. Curr. Sci. 75 (3), 101-109.
  15. Ramachandran, S., Ramesh, S., & Krishnamoorthy, R. (2000). Application of remote sensing and GIS in coastal Lagoonal ecosystem: a case study from Pulicat Lake, Southern India. Marine Remote Sensing Applications. Institute for Ocean Management, Anna University, pp. 333-343.
  16. Rango, A., Laliberte, A., Herrick, J.E., Winters, C., Havstad, K., Steele, C., & Browning, D., (2009). Unmanned aerial vehicle-based remote sensing for range land assessment, monitoring and management. J. Appl. Remote Sens. 3, 1-15. Go to original source...
  17. Rozenstein, O., & Karnieli, A. (2011). Comparison of methods for land use classification in corporating remote sensing and GIS inputs. Appl. Geogr. 31 (2), 533-544. Go to original source...
  18. Turner, D., Lucieer, A., & Watson, C. (2012). An automated technique for generating geo rectified mosaics from ultra-high resolution unmanned aerial vehicle (UAV) imagery, based on structure from motion (SfM) point clouds. Remote Sens. 4 (5), 1392-1410. Go to original source...
  19. Ullman, S. (1979). The interpretation of structure from motion. Proc. R. Soc. Lond. B 203, pp. 405-426. Go to original source...
  20. Van der Sande, C.J., De Jong, S.M., & De Roo, A.P.J. (2003). A segmentation and classification approach of IKONOS-2 imagery for land cover mapping to assist flood risk and flood damage assessment. Int. J. Appl. Earth Observ. Geoinform. 4 (3), pp. 217-229. Go to original source...
  21. Watts, A.C., Ambrosia, V.G., & Hinkley, E.A. (2012). Unmanned air craft systems in remote sensing and scientific research: classification and considerations o fuse. Remote Sens. 4 (6), pp. 1671-1692. Go to original source...
  22. Wolock, D.M., & McCabe, G.J. (1995). Comparison of single and multiple flow direction algorithms for computing topographic parameters in TOPMODEL. Water Resour. Res. 31, pp. 1315-1324. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.