DETUROPE - The Central European Journal of Regional Development and Tourism 2021, 13(3):4-31 | DOI: 10.32725/det.2021.017

Labour market crisis management after crisis of 2008 - Intervention expenditure and "Europe 2020" indicators

Tímea Győri
Hungarian University of Agricultural and Life Sciences, Doctoral School of Economics and Regional Sciences H-2100 Gödöllő, Páter Károly street 1

The primary aim of this study is to explore how the Member States of the European Union have responded to the crisis, what labour market interventions were preferred, how the structure of labour market expenditures changed between 2008 and 2018. On the other hand, examines the connections between the indicators of the Europe 2020 strategy, as well as the possibilities of condensing the indicators into principal components. Along the dimensions of the created main components, the Member States were grouped by K-mean cluster analysis. The paper also analyses the relationship between the established clusters and the labour market expenditures of each Member State.

Keywords: labour market, Europe 2020, correlation analysis, principal component analysis, cluster analysis

Published: February 1, 2022  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Győri, T. (2021). Labour market crisis management after crisis of 2008 - Intervention expenditure and "Europe 2020" indicators. DETUROPE - The Central European Journal of Regional Development and Tourism13(3), 4-31. doi: 10.32725/det.2021.017
Download citation

References

  1. Allison, P. (1999). Multiple Imputation for Missing Data: A Cautionary Tale. Sociological Methods & Research, 28(3), 301-309. DOI: 10.1177/0049124100028003003. Go to original source...
  2. Allison, P. (2003). 'Missing data techniques for structural equation models'. Journal of Abnormal Psychology, 112(4), 545-557. DOI: 10.1037/0021-843X.112.4.545112 Go to original source...
  3. Arsham, H. & Lovric, M. (2011). Bartlett's Test. In: Lovric M. (eds.), International Encyclopedia of Statistics Science, Springer, Berlin, Heidelberg. DOI: https://doi.org/10.1007/978-3-642-04898-2_132 Go to original source...
  4. Bansal, Arpit & Sharma, Mayur & Goel, Shalini. (2017). Improved K-mean Clustering Algorithm for Prediction Analysis using Classification Technique in Data Mining. International Journal of Computer Applications, 157(6), 35-40. DOI: 10.5120/ijca2017912719. Go to original source...
  5. Bardhoshi, G., Um, B. & Erford, B. T. (2021). Conducting a Cluster Analysis in Counseling Research: Four Easy Steps. Counseling Outcome Research and Evaluation, 12(1), 54-62. DOI: 10.1080/21501378.2020.1768522 Go to original source...
  6. Birkner, Z., Peter, E. & Fehérvölgyi, B. (2012). A possible approach of the concept of 'GLOCAL' through innovation. Deturope, 4(3), 4-21. Go to original source...
  7. Bottlik, Zs. (2008). A regionális és etnikai különbségek összefüggései Bulgáriában az ezredfordulón. Területi Statisztika, 48(3), 334-343. DOI: https://doi.org/10.1007/978-3-642-04898-2_132 Go to original source...
  8. Breslow, N. (1970). A generalized Kruskal-Wallis test for comparing K samples subject to unequal patterns of censorship. Biometrika, 57(3), 579-594. DOI: https://doi.org/10.1093/biomet/57.3.579 Go to original source...
  9. Capello, R. (2007). A forecasting territorial model of regional growth: the MASST model. The Annals of Regional Science, 41(4), 753-787. Retrieved February 20, 2021, from http://doi.org/c5wxvk DOI: 10.1007/s00168-007-0146-2. Go to original source...
  10. Cattell, R. B. & Vogelmann, S. (1977). A comprehensive trial of the scree and KG criteria for determining the number of factors. Multivariate Behavioral Research, 12(3), 289-325. DOI: https://doi.org/10.1207/s15327906mbr1203_2 Go to original source...
  11. Chung, S. & Cai, L. (2018). Alternative Multiple Imputation Inference for Categorical Structural Equation Modeling. Multivariate Behavioral Research, 54(3), 323-337. DOI: 10.1080/00273171.2018.1523000 Go to original source...
  12. Diez Roux, A. V., Borrell, L. N., Haan, M., Jackson, S. A. & Schultz, R. (2004). Neighbourhood environments and mortality in an elderly cohort: Results from the cardiovascular health study. Journal of Epidemiology & Community Health, 58, 917-923. DOI: https://doi.org/10.1136/jech.2003.019596 Go to original source...
  13. Egri, Z., Törőcsik, V. & Tánczos, T. (2009). Regional HDI as a territorial and social differentiation index in Central Europe. In Káposzta J. (eds.), New elements and research in spatial economy, 167-180.
  14. Egri, Z. (2017). Regional health inequalities in the European macroregion from the East Central European perspective. Regional Statistics, 7(1), 197-224. Go to original source...
  15. European Commission (2010). Labour market and wage developments in 2009. In: European Economy, Brussels. DOI:10.2765/36582 Go to original source...
  16. European Commission (2013). Sustainable development in the European Union - 2013 monitoring report of the EU sustainable development strategy. Eurostat Statistical Books. Luxembourg: Publications Office of the European Union. ISBN 978-92-79-31155-0 DOI: 10.2785/11549 Go to original source...
  17. European Commission (2018/a). Draft joint employment report from the Commission and the Council. Retrieved September 27, 2021, from https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52018DC0761&from=EN
  18. European Commission (2018/b). Labour market policy statistics - Methodology 2018. Luxembourg: Publications Office of the European Union. ISBN 978-92-79-91299-3 DOI: 10.2767/291515 Go to original source...
  19. European Commission (2020). Proposal for a joint employment report from the Commission and the Council. Retrieved September 27, 2021, from https://eur-lex.europa.eu/resource.html?uri=cellar:d5c1e490-29b7-11eb-9d7e-01aa75ed71a1.0001.02/DOC_1&format=PDF
  20. Ékes, I. (2011). Foglalkoztatás és munkahelybővítés - nemzetközi kitekintéssel. Statisztikai Szemle, 86(10-11), 970-994.
  21. Fabrigar, L. R., Wegener, D. T., MacCallum, R. C., & Strahan, E. J. (1999). Evaluating the use of exploratory factor analysis in psychological research. Psychological Methods, 4(3), 272-299. Go to original source...
  22. Ginkel, J. R. V., Kroonenberg, P. M. & Kiers H. A. L. (2014). Missing data in principal component analysis of questionnaire data: a comparison of methods, Journal of Statistical Computation and Simulation, 84(11), 2298-2315, DOI: 10.1080/00949655.2013.788654 Go to original source...
  23. Hajdú, D. (2020). A munkanélküliség és felnőttképzés területi eloszlása az Észak-magyarországi régióban. Észak-magyarországi Stratégiai Füzetek, 17(2), 62-69. DOI: https://doi.org/10.32976/stratfuz.2020.14 Go to original source...
  24. Hakstian, A. R., & Muller, V. J. (1973). Some notes on the number of factors problem. Multivariate Behavioral Research, 8(4), 461-475. DOI: https://doi.org/10.1207/s15327906mbr0804_4 Go to original source...
  25. Harper, J. F. (1984). Peritz' F test: Basic program of a robust multiple comparison test for statistical analysis of all differences among group means. Computers in Biology and Medicine, 14(4), 437-445. DOI: https://doi.org/10.1016/0010-4825(84)90044-1. Go to original source...
  26. Jankó, B. (2010). A tudás szerepe a gazdasági növekedésben - az alapmodellek bemutatása. Statisztikai Szemle, 88(1), 47-72.
  27. Jolliffe, I. T. (2005). Principal component analysis. 2nd ed. John Wiley & Sons. New York. DOI: 10.1002/0470013192.bsa501 Go to original source...
  28. Jolliffe, I. T. & Cadima, J. (2016). Principal component analysis: a review and recent developments. Philosophical Transactions of the Royal Society, 374(2065), 1-16. DOI: http://dx.doi.org/10.1098/rsta.2015.0202 Go to original source...
  29. Kaiser, H. F. (1960). The application of electronic computers to factoranalysis. Educational and Psychological Measurement, 20, 141-151. DOI: http://dx.doi.org/10.1177/001316446002000116 Go to original source...
  30. Kaiser, H. F. (1981). A revised measure of sampling adequacy for factor-analytic data matrices. Educational and Psychological Measurement, 41(2), 379-381. Go to original source...
  31. Kálmán, J. (2015). A közfoglalkoztatási programok háttere és nemzetközi tapasztalatai. In: Munkaerőpiaci tükör, 2014 (pp.42-58). MTA Közgazdaság- és Regionális Tudományi Kutatóközpont Közgazdaság-tudományi Intézet, Budapest.
  32. Kovács, E. (2014). Többváltozós adatelemzés. Budapesti Corvinus Egyetem, Operációkutatás és Aktuáriustudományok tanszék. Typotex, Budapest. Retrieved February 20, 2021, from http://etananyag.ttk.elte.hu/FiLeS/downloads/14_KOVACS_E_Tobbvalt_adatelemzes.pdf.
  33. Lambert, Z. V., Wildt, A. R., & Durand, R. M. (1990). Assessing sampling variation relative to number-of-factors criteria. Educational and Psychological Measurement, 50(1), 33-48. DOI: https://doi.org/10.1177/0013164490501004 Go to original source...
  34. Lengyel, I. (2010). Regionális gazdaságfejlesztés. Versenyképesség, klaszterek és alulról szerveződő stratégiák. Budapest, Akadémiai Kiadó. ISBN 978-963-05-8837-9
  35. Liu, Y., Singleton, A. & Arribas-Bel, D. (2019). A Principal Component Analysis (PCA)-based framework for automated variable selection in geodemographic classification. Geo-spatial Information Science, 22(4), 251-264. DOI: 10.1080/10095020.2019.1621549 Go to original source...
  36. Mankiw, N. G., Romer, D. & Weil, D. N. (1992). A contribution to the empirics of economy growth. The Quarterly Journal of Economics. Retrieved February 15, 2021, from https://eml.berkeley.edu/~dromer/papers/MRW_QJE1992.pdf 407-437. p. Go to original source...
  37. MacQueen, J. B. (1967). Some methods for classification and analysis of multivariate observations. Proceedings of the Fifth Symposium on Math, Statistics, and Probability (pp. 281-297). Berkeley, CA: University of California Press.
  38. Nemes Nagy, J. ed. (2005). Regionális elemzési módszerek. In: ELTE Regionális Földrajzi Tanszék, Budapest. (Regionális Tudományi Tanulmányok, 11.)
  39. Oravecz, B. (2008). Hiányzó adatok és kezelésük a statisztikai elemzésekben. Statisztikai szemle, 86(4), 365-384.
  40. Ostertagová, E., Ostertag, O., & Kováč, J. (2014). Methodology and Application of the Kruskal-Wallis Test. Applied Mechanics and Materials, 611, 115-120. DOI: https://doi.org/10.4028/www.scientific.net/amm.611.115 Go to original source...
  41. Rao, M. R. (1971). Cluster Analysis and Mathematical Programming. Journal of the American Statistics Association, 66(335), 622-626. DOI: 10.1080 / 01621459.1971.10482319 Go to original source...
  42. Ramsey, P. H. (1978). Power Differences between Pairwise Multiple Comparions. Journal of the American Statistical Association, 73(363), 479-485. DOI: 10.1080/01621459.1978.10480038 Go to original source...
  43. Ramsey P. H. & Ramsey P. P. (2013). Pairwise testing of group mean vectors in MANOVA with small samples, Journal of Statistical Computation and Simulation, 83(6), 1037-1057. DOI: 10.1080/00949655.2011.648936 Go to original source...
  44. Rechnitzer, J., Barsi, B., Szabó, P. & Németh N. (2003). A gazdasági térszerkezet vizsgálatát elősegítő új dimenziók illetve az ezzel kapcsolatos módszerek kutatása. In: VÁTI Magyar Regionális Fejlesztési és Urbanisztikai Kht. Területfejlesztési igazgatóság, Elemző és értékelő iroda. Budapest.
  45. Robinette, J. W., Charles, S. T. & Gruenewald, T. (2017). Neighborhood socioeconomic status and health: A longitudinal analysis. Journal of Community Healt, 42(5), 865-871. DOI: https://doi.org/10.1007/s10900-017-0327-6 Go to original source...
  46. Romer, P. M. (1994). The origins of endogenous growth. The Journal of Economic Perspectives, 8(1), 3-22. Retrieved January 12, 2021, from http://doi.org/bbs8mn DOI: 10.1257/jep.8.1.3. Go to original source...
  47. Rubin, D. B. (1987). Multiple imputation for nonresponse in surveys. John Wiley & Sons. New York. Go to original source...
  48. Shlens, J. (2014). A Tutorial on Principal Component Analysis. Retrived September 27, 2021, from arXiv: 1404.1100 Go to original source...
  49. Simon, J. (2006). A klaszterelemzés alkalmazási lehetőségei a marketingkutatásban. Statisztikai Szemle, 84(7), 627-651.
  50. Székelyi, M., Barna, I. (2005). Túlélőkészlet az SPSS-hez, Typotex Kiadó. Budapest.
  51. Vargha, A., & Delaney, H. D. (1998). The Kruskal-Wallis Test and Stochastic Homogeneity. Journal of Educational and Behavioral Statistics, 23(2), 170-192. DOI: https://doi.org/10.3102/10769986023002170 Go to original source...
  52. Zou, H., Hastie, T. & Tibshirani, R. (2006). Sparse Principal Component Analysis. Journal of Computational and Graphical Statistics, 15(2), 265-286. DOI: https://doi.org/10.1198/106186006X113430 Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.